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Figure 1.  Computed specific energy density vs. current 
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utili zation and power density.  We modified the model of 
Doyle, Fuller and Newman [1,2] to allow computation of 
charge-discharge characteristics for electrodes with a 
variety of porosity gradients [3].  Except for the porosity 
variations, the materials and systems parameters used in 
the model are typical of a lithium rechargeable battery. 
 
 Figure 1 ill ustrates results in the form of specific 
energy density vs. discharge current density curves for a 
battery containing a 100 µm thick MCMB carbon anode 
of uniform microstructure, and a 200 µm thick LiMn2O4 
cathode with various linear porosity gradients (additional 
details of the model will be presented in the talk).  The 
total pore fraction of the cathode was maintained at 0.3 
throughout.  In the legend, the two numbers give the pore 
fraction at the cathode-separator interface and the 
cathode-collector interface, respectively.  It is seen that at 
very low current density, the curves converge since all 
cases have complete cathode utilization.  At very high 
current density, they again converge at zero utili zation.  
However, at intermediate current densities, the specific 
energy density varies dramatically with the sign and 
magnitude of the porosity gradient.  At 15 A/m2, an 
appropriately graded electrode can have nearly twice the 
energy density of a homogeneous electrode.  The 
corresponding Ragone plot, Figure 2, shows the “knee” 
moving outwards for cathodes with higher porosity 
towards the separator side, where the ion current density 
is greatest during charge and discharge. 
 
 These results demonstrate a first-level of 
microstructure control through which significant increases 
in power density can be obtained without sacrificing 
energy density.  In the talk, additional optimization 
schemes will be discussed.  Results for lithium metal 

density for li thium ion batteries with cathodes 
of homogeneous and linearly varying porosity. 

 

 
 
 

Figure 2.  Ragone plot for batteries in Fig. 1. 
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